استفاده از روشهای نوین اصلاح نباتات در بهبود عملکرد


دسته بندی: زراعت
استفاده از روشهای نوین اصلاح نباتات در بهبود عملکرد

هدفهای کلی اصلاح نباتات افزایش عملکرد در واحد سطح بهتر نمودن کیفیت محصولات کشاورزی و تولید مواد اولیه مورد نیاز جوامع انسانی است.
هدف اصلاحی نهایی در هر برنامه اصلاحی افزایش عملکرد می‌باشد. در شرایط نا مساعد افزایش عملکرد به طریق اصلاح نباتات به مقدار کم و صرف زمان طولانی ممکن است ژنهای کنترل کننده عملکرد برای بروز حداکثر پتانسیل خود به عوامل محیطی تولید وابسته می‌باشند. به طور کلی عمدترین اهداف اصلاح نباتات را می‌توان در عناوین زیر خلاصه می‌شود.
1) مقاومت به تنشهای محیطی
مقاومت از جمله عمده‌ترین اهداف اصلاح نباتات می باشد. بیشتر تولیدات در مناطق نامساعد سرما و شوری حاصل می شود. و گیاه مجبور است برای تولید کافی با این شرایط نامساعد مقابله کند بعضی از واریته‌های گیاهان در شرایط نامساعد محیطی و فقر حاصلخیزی خاک قادر هستند مقدار مناسبی محصول را در واحد سطح تولید کنند فلذا شناسایی ژنوتیپهای مقاوم به تنشهای محیطی از اصلی‌ترین راهکارهای مناسب برای رفع معضل مذکور می‌باشد.
2) مقاومت به آفات و بیماری:
برای دستیابی به حداکثر تولید، مقاوم بودن به آفات و بیماریها ضروری است علفهای هرز، حشرات بیماریهای باکتریایی و ویروسی در مقاطع مختلف از مرحله رشد گیاه بیشترین خسارت را به محصول وارد می‌کند. اصلاحگران همراه سعی بر دستیابی به گیاهان را دارند که حاوی ژنهای مطلوب به مقاومت به آفات و بیماریها هستند. علت مقاوم بودن بعضی از واریته‌ها را به مکانیزم فیزیولوژیکی فعال در برابر حمله آفات می‌دانند به عنوان مثال ترکیبی به نام فیتوالکین در لوبیا همراه در هنگام شیوع بیماری فوزاریوم از گیاه ترشح می‌شود که باعث بلوکه شدن و توقف توسعه بیماری می‌شود. به هر حال از برنامه‌های اصلاحی مهم ایجاد گیاهان مقاوم می‌باشد. مقاومت به آفات بیشترین بازده اقتصادی را برای کشاورزان نوید بخش است. مقاوم منجر به سرشکست شدن بسیاری از هزینه‌های تحمیلی به کشاورزان و بی‌نیاز شدن به فعالیتهایی همچون سمپاش و آلودگی محیط زیست و مسائل باقیمانده سموم در بافت گیاهان زراعی با مصرف خوراکی می‌گردد.
3) افزایش تولید در واحد سطح:
افزایش تولید در واحد سطح و استفاده از ژنوتیپهای مفید و مطلوب در هر منطقه آب و هوایی از دیگر اهداف اصلاحگران نباتات می باشد. عملکرد گیاه در واحد سطح منعکس کننده برآیند همه اجزا گیاه می باشد. بهرحال همه ژنوتیپهای تولید شده دارای عکس العمل فیزیولوژیکی و ژنتیکی یکسانی در شرایط مختلف نیستند. عملکرد صفتی پیچیده است که تحت تاثیر اثر متقابل ژنوتیپ و محیط می باشد.
4) بهبود کیفیت
کیفیت خصوصیتی است که باعث افزایش ارزش محصول می‌شود کیفیت در جائی ممکن است به ارزش غذایی یک غله یا طعم و بافت یک میوه تلقی شود. کیفیت جزء مهمی از هر برنامه اصلاح نباتات محسوب می‌شود. به عنوان مثال ژنوتیپهای مختلف گندم آرد تولیدی حاصل از آن را تحت تاثیر قرار داده و نهایتاً حجم و بافت و رنگ نان را مستقیماً تحت تاثیر قرار می‌دهد. بهرحال در گیاه اصلاح شده از لحاظ پروتئین و اسیدهای آمینه ممکن است متفاوت باشد. در اهداف تولید نباتات علوفه‌ای توجه به کیفیت علوفه همواره مسئله خوش‌خوراکی و ارزش تغذیه‌ای را در بردارد در گیاهان زینتی کیفیت مفهومی جدا از گیاهان زراعی دارد. خصوصیات کیفی در گلهای زینتی عمدتاً همچون شکل ظاهر، شدت و میزان عطر ساطع شده و وجود و عدم وجود تیغ، تعداد گلبرگ را شامل می شود. در میوه ها و محصولات انباری که طیف وسیعی از میوه جات و سبزیجات را در بر می گیرد کیفیت معمولاًَ به مقاوم و ماندگاری خصوصیات بیوشیمیایی محصول انبار شده در برابر تغییرات طولانی مدت محیط فیزیکی را شامل می شود. خصوصیات انباری از مهمترین شاخصهای اقتصادی را شامل می شودکه با بازار پسندی محصول ارتباط مستقیمی دارد.
اینتروگرسیون :
فرایند اینترگرسیون ، به معنای وارد کردن قسنتی از مواد ژنتیکی یک گونه به گونه دیگر می تواند توسط تلاقی های برگشتی مکرر F۱ بین گونه ای با یکی از والدین انجام می شود. در اکثر موارد از اینتروگرسیون به منظور انتقال ژنهای مقاوم به بیماری از سایر گونه ها به گونه های زراعی که فاقد ژن مقاوم هستند استفاده می شود.
اصلاح گیاهان با استفاده از موتاسیون :
به نظر می رسد تنوع ژنتیکی حاصل از موتاسیون مصنوعی با تنوع حاصل از موتاسیون طبیعی یکسان باشد. بنابراین اصول اساسی استفاده از تنوع حاصله از موتاسیون مصنوعی ÿا تنوع حاصل از موتاسیون طبیعی یکسان است. اصلاح کننده بایستی با عوامل موتاژن کاربرد آنها و نحوه ایجاد موتاسیون آشنا بوده و به تشخیص گیا هان موتانت قادر و امکانات و وسایل لازم را دارا باشد. به طور کلی دو عامل فیزیکی و شیمیایی در ایجاد موتاسیون دخالت دارند موتاژنهای فیزیکی شامل اشعه ایکس ، گاما، نوترون و UV می باشد. اکثراًَ‌اصلاحگران به این موتاژنها دسترسی ندارند لذا از مواد شیمیایی عمدتاًَ استفاده می کنند.
تولید گیاهان هاپلوئید و دابل‌هاپلوئیدی
تولید هاپلوئید و سپس دو برابر نمودن کروموزمهای آن به ایجاد دابل هاپلوئید می‌انجامد که سریعترین روش دستیابی به اینبریدینگ کامل در طی یک مرحله می‌باشد. در روشهای متداول بهنژادی گزینش داخل نتاج به عنوان یک معضل اصلاح‌کنندگان محسوب می‌شود زیرا تعداد جمعیتهای و مزارع مختص ارزیابی هر سال افزایش می‌یابد. مهمترین روشهای القائی تولید هاپلوئید عبارتند از:
1) کشت بساک، تخمک (ژینوژنژ) کشت تخمک، دورگ‌گیری بین گونه‌ای
۲) کشت گلچه
3) میکروسپور (آندوژنز)
تولید هاپلوئید به روش میکروسپور یکی از کاراترین و معمولترین روش ایجاد هاپلوئید می‌باشد میکروسپور دانه گرده‌ای است که در مرحله ابتدائی نمو در محیط کشت، گیاهچه هاپلوئید را بوجود می‌آورد، کشت بساک نیز معمولترین فرم کشت گرده است که بساکها در مرحله نموی تک هسته‌ای انتخاب می شود. تولید گیاهان هاپلوئید به تعداد زیاد به روش کشت بساک بستگی دارد. ایجاد هاپلوئید گندم توسط تلاقی گندم× ارزن و گندم × ذرت امکانپذیر می‌باشد.
تکنیکهای دو برابر کردن مجموعه کروموزمی (ژنوم) هاپلوئید‌ها برای تهیه گیاهان صد در صد خالص (دابل هاپلوئید) نقش اساس را ایفا می‌کند. مکانیزمهای دو برابر شدن ژنوم میکروسپوربه دو پدیده اتحاد هسته‌ای و دو برابر شدن میتوزی یا داخلی نسبت داده می‌شود. در طرحهای به‌نژادی گیاهان خود گشن به تعداد نسبتاً زیادی گیاه دابل هاپلوئید جهت گزینش بهترین لاین نیاز می‌باشد. برای ایجاد لاینهای اینبرد به روش دابل‌هاپلوئیدی در گیاهان دگرگشن نیز تعداد زیادی لاین مورد احتیاج می‌باشد.
کل‌شی‌سین مهمترین عامل شیمیایی دو برابر نمودن کروموزومی است که در سطح وسیعی بکار می رود. کل‌سی‌سین بازدارنده رشته های دوکی شکل وعمل کننده در سلولهای در حال تقسیم گیاهان می باشد. به ططور دقیق تر کل‌شی‌سین از تشکیل میکرو بتولها از طریق پیوند با زیر واحد پروتئین میکروبولی ها به نام تیوبولین ممانعت می کند لذا کروموزمها در مرحله متافاز یک جا وارد یک سلول می گردند که نتیجتاًَ تعداد کروموزوم سلول حاصل از تقسیم دو برابر می گردد. گیاهان هاپلوئید در تعدادی از گونه های زراعی شامل پنبه، توت فرنگی ، گوجه فرنگی، جو و توتون و سیب زمینی و برنج و گندم و بعضی از گیاهان دیگر تولید شده اند.
پروتوپلاست فیوژن :
اغلب ممکن است پیوند دو گانه گیاه خویشاوند که از نظر جنسی با هم سازگار نیستند مورد نظر باشد .بدیهی است که استفاده از روش آمیزش جنسی که معمولاًبرای پرورش گیاه به کار برده می شود در این مورد ممکن نیست اما با هم در هم آمیختگی و الحاق پروتوپلاست گیاه مربوطه می توان به همان مقصود نائل گردید .
برای انجام این کار دو روش اساسی وجود دارد.
۱) در روش اول از مواد شیمیائی مانند پلی اتیلن گلیلول ،دکستران و اورنیتین به عنوان مواد ملحق کننده وممزوج کننده استفاده می شود که باعث تسریع در ترکیب پروتوپلاسها می گردد.
۲) از روش دیگری به نام امتزاج الکتریکی نیز می توان استفاده کرد .در این روش چسبندگی پروتوپلاسها در یک میدان الکتریکی غیر یکنواخت به وقوع می پیوندد و در هم آمیختگی هنگامی روی می دهد که ضربان یا تناوب کوتاهی از جریان مستقیم به کار برده می شود پس از در هم آمیختگی مجموعه های ژنی هسته و سیتوپلاسم مجدداًبا هم ترکیب می شوند ودر نتیجه آرایش جدیدی از تر کیب ژنها به وجود می آید.
تغییر در تعداد و ساختار کروموزوم (مهندسی کروموزوم):
الف) آنیوپلوئیدها:
تغییرات کروموزمی را که شامل یک یا چند کروموزم باشد آنیوپلوئیدی می گویند. اهمیت آنیوپلوئیدی در تکامل گیاهان کمتر از پلی پلوئیدی بوده و زمان لازم برای تکامل واهلی شدن گیاهان آنیوپلوئید طولانی تر از گیاهان پلی پلوئید است .حالات نالی زومی ،مونوزومی،تری زومی ،تترازومی از فرمهای مختلف آنیوپلوئیدی هستند.
ب) آلوپلوئیدی:
بنا به تعریف یک گیاه آلوپلوئید از ترکیب و دو برابر نمودن دو یا چند ژنوم متفاوت تولید می شود .تفاوت بین دو ژنوم مختلف بستگی به رفتارکروموزمها در تقسیم کاهش کروموزومی دارد. برای تولید آلو پلوئیدها از دو برابر نمودن تعداد کروموزومهای هیبرید استفاده می شود. آلوپلوئیدها غالباً تتراپلوئید یا هگزا پلوئید بوده واز ترکیب ژنومهای دو وسه گونه دیپلوئید به وجود می آید .گندم بهترین نمونه آلوپلوئیدی در غلات است. گونه های گندمی که دارای ۲۱ جفت کروموزم هستند از تلاقی بین گونه های تترا پلوئید اهلی وگونه دیپلوئید وحشی به وجود آمده اند.
ج) اتو پلی پلوئیدی:
اتوپلی ئیدی در طبیعت به عنوان مکانیسمی برای بهبود اطلاعات ژنتیکی اتفاق می افتد. اتوتترا پلوئید است و ارقام تجاری موزوبعضی از سیب ها اتوتریلوئیدهستند. در بعضی گونه های گیاهی افزایش معقول در تعداد ژنوم با افزایش در اندازه سلول و بزرگترشدن اندامها همراه است . برای مثال تریپلوئید از بنیه بهتری برخوردارند و در مقایسه با سیب های دیپلوئید میوه های بزرگتری می دهند از اتو پلی پلوئیدی برای تولید میوه و گلهای بزرگ نیز استفاده شده است. در برنامه های اصلاحی اتو پلوئیدهای مصنوعی دو هدف مهم در نظر گرفته می شود:
1)افزایش باروری در نباتات بذری
2)تولید یک ژنوتبپ یا ترکیبی از ژنوتیپها که برتر از بهترین دیپلوئیدها در بعضی از صفات مهم باشند
کشت بافت گیاهی :
کشت بافت فرایندی است که در آن قطعات کوچکی از بافت زنده از گیاهی جدا شده و به مدت کشت نا محدودی در یک محیط مغذی رشد داده می شود. برای انجام کشت سلولی موفق بهترین حالت آن است این عمل با کشت بخشی از گیاه که حاوی سلولهای تمایز نیافته است آغاز می شود زیرا چنین سلولهایی می تواند به سرعت تکثیر یابند. قطعات گیاه در محیط کشت می تواند به طور نا محدودی رشد کرده و توده سلولی تمایز نیافته به نام کالوس می کنند بر اینکه سلول گیاهی نمو کند و به کالوس تبدیل شوند لازم است که محیط کشت حاوی هورمونهای گیاهی مانند اکسین، سیتوکسین و جبیرلین باشد
کاربردهای کشت بافت های سلولی :
1) گیاهان عاری از عوامل بیماریزایی گیاهی
2) تولید مواد شیمیایی
گیاهان به عنوان منبع مهمی از مواد پیشتاز فراورده هایی که در صنایع مختلف مانند داروسازی، صنایع غذایی و آرایشی و بهداشتی و کشاورزی مورد استفاده اند.
غلات ممکن است توسط گونه های زیادی از آفات میکروبی ، ویروس، باکتریائی و قارچی آلوده می شوند. این آلودگیها تا حد زیادی موجب کاهش تولید فراورده کیفیت آن و توان گیاه می شوند. آلودگی در درختان میوه بازده محصول را تا ۹۰% کم می کند. اساس به دست آوردن گیاهان بدون ویروس کشت مریستم انتهایی آنهاست با کشت قطعه کوچکی از مریستم می توان کالوس بدون ویروس تهیه کرد.
مواد گیاهی که از طریق کشت بافت تکثیر می شوند تغییرات ژنتیکی بالایی را نشان می دهند. زمانی که از کشت کالوس مرتباًَ زیر کشت گرفته شود گیاهان حاصل سطح پلوئیدی متفاوتی را نشان می دهند و همینطور که بحث خواهد شد این تغییرات ناشی از کشت بافت می تواند تنوع ژنتیکی جدیدی را در اختیار اصلاح کننده نباتات قرار دهد.
نشانگرهای مولکولی:
بسیاری از محدودیتهای روشهای مختلف اصلاح نباتات ریشه در فقدان ابزارهای مناسب برای مطالعات ژنتیکی دارد .وجود ماهیت کمی صفات اقتصادی در محصولات کشاورزی موجب شد که محیط بسیاری ارز براوردهای ارزشهای اصلاحی را تحت تاًثیر قرار دهد و لذا استفاده از ابزارهائی که حداقل تاثیر پذیری را از محیط دارند گام مؤثری در افزایش پیشرفتهای ژنتیکی مورد استفاده می باشد. مارکرهای مولکولی و اخیر نشانگرهای DNA ابزار مناسبی هستند که بر اساس آن می توان جایگاه ژنی وکروموزمی ژنهای تعیین کننده صفات مطلوب را شناسائی کرد. با دانستن جایگاه یک ژن روی کروموزم می توان از نشانگرهای مجاور آن برای تائید وجود صفت در نسلهای تحت گزینش استفاده نمود.
با در دست داشتن تعداد زیادتر نشانگر می توان نقشه های ژنتیکی کاملتری را تهیه نمود که پوشش کاملی را در تمام کروموزمهای گیاهان به وجود می آورد.استفاده از نشانگرها موجب افزایش اطلاعات مفید و مناسب از جنبه های پایه وکاربردی اصلاح نباتات خواهد گردید .
انتخاب به کمک نشانگرهای مولکولی راه حلی است که دست آورد زیست شناسان مولکولی برای متخصصان اصلاح نباتات می باشد در این روش ژن مورد نظر بر اساس پیوستگی که با یک نشانگر ژنتیکی تشخیص داده و انتخاب می شود و بنابراین به عنوان قدم اول در روش انتخاب به کمک نشانگر باید نشانگرهای پیوسته با ژنهای مورد نظر شناسائی شود. یافتن نشانگرهائی که فاصله آنها از ژن مطلوب کمتر از cm۱۰می‌باشد به طور تجربی نشان داده شده که در این صورت دقت انتخاب ۹۹/۷۵ درصد خواهد بود لذا داشتن نقشه های ژنتیک اشباع که به طور متوسط دارای حداقل یک نشانگر به ازای کمتر از cm۱۰ فاصله روی کروموزمها باشد از ضروریات امر می باشد.
یکی از پایه های اساسی اصلاح نباتات دسترسی وآگاهی از میزان تنوع در مراحل مختلف پروژه های اصلاحی است . به همین جهت نشانگرهای برآورد مناسبی از فواصل ژنتیکی بین واریته های مختلف را نشان می دهند.
هیبریداسیون :
هیبریداسیون یکی از ابزارهای متداول اصلاح نباتات کلاسیک می باشد که در واقع به تلاقی بین دو واریته برای دستیابی به ژنوتیپ برتر اطلاق می شود. یک برنامه هیبریداسیون ممکن است به واریته های داخل یک گونه یا بین والدین چند جنس مختلف صورت پذیرد. اصلاحگران بعد از هیبریداسیون در جستجوی ژنوتیپهای برتر هموزیگوت نیست بلکه سعی می کنند که مجموعه ای از ژنهای را انتخاب کنند که دارای اثر متقابل ژنتیکی مفید و اثرات هتروزیس هستند. وجود پدیده هیبریداسیون امکان انتقال ژنهای مفید از یک گونه به گونه دیگر را فراهم می کند. هیچ پدیده ای در علم اصلاح نتوانسته تاثیر ی مانند واریته های هیبرید روی افزایش مواد غذایی در دنیا بگذارد. واریته های هیبرید به جامعه F۱ که برای استفاده تجاری تولید می شوند اطلاق می شود یکی از روشهای هیبریداسیون ، دابل کراس می باشد که به خوبی نتایج مطلوب پیامد خود را به ثبات رسانده است .
مهندسی ژنتیک گیاهی:
مهندسی ژنتیک گیاهی در رابطه با انتقال قطعه ای DNAبیگانه با کدهای حاوی اطلاعات ژنتیکی مورد نظر از یک گیاه به وسیله پلاسمید، ویروس بحث می‌کند. زمانی که هیبریداسیون جنسی غیر ممکن است مهندسی ژنتیک پتانسیل انتقال ژن عامل یک صفت مفید را از گونه‌های وحشی با خویشاوندی دور به یک گونه زراعی برای اصلاح کننده نباتات فراهم می‌سازد در استفاده از باکتریها در مهندسی ژنتیک از پلاسمیدهای باکتری Ecoli استفاده می‌شود.
مهندسی ژنتیک در گیاهان چگونه صورت می گیرد:
دانشمندان معمولاً از مهندسی ژنتیک در عالم طبیعت در انجام کارهایشان الگو برداری می کنند. مهندسی ژنتیک در عالم طبیعت در یک باکتری خاکزی تحت عنوان آگروباکتریوم تاموفاشین را به کار رفته است. این باکتری شامل یک DNA حلقوی کوچک و آزاد بنام پلاسمید می باشد از پلاسمید این باکتری غالباً برای تغییر ساختار ژنتیکی یک گیاه حساس به بیماری گال استفاده می‌شود. دانشمندان در گام اول ژنهائی را که یک خصوصیت مطلوب و یا یک صفت اتصالی را کنترل می‌کنند ،شناسائی می کنند. تا در گام بعدی این ژن مطلوب را به گیاه مورد نظر انتقال دهند. برای انجام چنین کاری در گیاهی که حاوی آن ژن مطلوب هست، ژن مربوطه را را از قطعه DNA آن گیاه با استفاده از آنزیم‌های خاصی جدا می‌کنند. این آنزیم‌ها مانند یک قیچی عمل کرده و نیز پلاسمید حاصل از باکتری آگروباکتریوم را با همان آنزیم‌ها برش می دهند و ایجاد یک قطعه DNA باز می کنند سپس این پلاسمید باز شده را در مجاورت ژن مطلوب قرار داده و با یکدیگر ادغام می کنند و با استفاده از آنزیمهای خاصی اتصالات مربوطه را بین این ژن و پلاسمید انجام می‌دهند. آنها می‌توانند پلاسمیدی را تولید کنند که حاوی این ژن مطلوب می‌باشد. چنین پلاسمیدی را DNA ی نوترکیب یا RDNA می‌نامند دانشمندان این مجموعه را (پلاسمید نو ترکیب) به داخل باکتری آگرو باکتریوم بر می‌گردانند و در نتیجه این باکتری شامل پلاسمید تغییر یافته می‌شود . مجموعه پلاسمید+ ژن مطلوب+ آگروباکتریوم به گیاه مورد نظر منتقل می‌شود. بعضی از سلولهای این گیاه، ژن مربوطه را از پلاسمید دریافت کرده و جزء ساختار DNA خودی می‌کنند. وقتی چنین سلولهای گیاهی در محیطهای کشت رشد داده می شوند، تولید گیاهان کوچکی می‌کنند که می‌توان وجود صفت جدید مورد انتظار از ژن انتقال یافته را در آنها تست کرد. این چنین گیاهانی نامیده می‌شوند گیاهان تراریخت و باید آزمونهای بیشتری بر روی آنها صورت گیرد.
گیاهان تولید شده از طریق مهندسی ژنتیک:
علم مهندسی ژنتیک تکنیکهائی را شامل می‌شود که بر اساس کار چندین دانشمند که مؤفق به کسب جایزه نوبل شده‌اند، پایه‌گذاری شده است .مهندسی ژنتیکی یک علم افسانه‌ای به نظر می‌رسد. اما امروزه در سطح وسیع در صنایع بیوتکنولوژی و آزمایشگاه های تحقیقاتی دانشگاهی انجام می گیرد. تکنیکهای مورد استفاده در این عمل به خوبی تعریف شده است. اما بسیاری از ادعاها در مورد مهندسی ژنتیک چندان درست نمی‌باشد. در این مقاله چگونگی کاربرد تکنیکهای مهندسی ژنتیک و مثالهای مربوطه توصیف شده است. پاسخ بسیاری از سؤالات پیرامون مهندسی ژنتیک در پی این دو توصیف زیر داده خواهد شد ضمناً تعریف بعضی از اصطلاحات در انتهای این مقاله آمده است .